- 4. Write short answers to any NINE (9) questions :
 - (i) Find the values of all the trigonometric functions of 420°.
 - (ii) Prove that $(\sec \theta + \tan \theta)(\sec \theta \tan \theta) = 1$
 - (iii) Show that $\cos(\alpha + \beta)\cos(\alpha \beta) = \cos^2\beta \sin^2\alpha$
 - (iv) If α , β , γ are the angles of a triangle ABC, then prove that $\tan (\alpha + \beta) + \tan \gamma = 0$
 - (v) Prove that $1 + \tan \alpha \tan 2\alpha = \sec 2\alpha$
 - (vi) Prove that $\frac{\sin 3x \sin x}{\cos x \cos 3x} = \cot 2x$
 - (vii) Write the domain and range of cosec x.
 - (viii) Find the period of $\tan \frac{x}{7}$
 - (ix) A vertical pole is 8m high and the length of its shadow is 6m. What is the angle of elevation of the sun at that moment?
 - (x) If b = 95, c = 34 and $\alpha = 52^{\circ}$, find a
 - (xi) Show that $r_2 = s \tan \frac{\beta}{2}$
 - (xii) Solve the equation $1 + \cos x = 0$
 - (xiii) Solve the equation $\sin x + \cos x = 0$

SECTION - II

Note: Attempt any THREE questions.

- 5. (a) Prove that all 2×2 non-singular matrices over the real field form a non abelian group under multiplication.
 - (b) Find the inverse of $A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & -1 & 3 \\ 2 & -4 & 1 \end{bmatrix}$ and show that $A^{-1}A = I_3$
- 6. (a) Use synthetic division to find the values of p and q if x + 1 and x 2 are the factors of the polynomial $x^3 + px^2 + qx + 6$
 - (b) Find the 18th term of the A.P. if its 6th term is 19 and the 9th term is 31.
- 7. (a) Show that ${}^{16}C_{11} + {}^{16}C_{10} = {}^{17}C_{11}$
 - (b) Find the coefficient of x^5 in the expansion of $\left(x^2 \frac{3}{2x}\right)^{10}$
- 8. (a) If ℓ is arc length of a circle central angle of an arc is θ radian and r is radius of a circle then prove $\ell = r \theta$
 - (b) Prove that (without using calculator) $\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ} = \frac{1}{16}$
- 9. (a) Solve the triangle ABC, in which a = 7, b = 7, c = 9
 - (b) Prove that (without using calculator) $\tan^{-1} \frac{3}{4} + \tan^{-1} \frac{3}{5} \tan^{-1} \frac{8}{19} = \frac{\pi}{4}$

24-212-I-(Essay Type)-29000

5

5

5